If it's not what You are looking for type in the equation solver your own equation and let us solve it.
40w^2=5w
We move all terms to the left:
40w^2-(5w)=0
a = 40; b = -5; c = 0;
Δ = b2-4ac
Δ = -52-4·40·0
Δ = 25
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{25}=5$$w_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-5)-5}{2*40}=\frac{0}{80} =0 $$w_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-5)+5}{2*40}=\frac{10}{80} =1/8 $
| 16×18×4x-6=180 | | 8x-48=4(2x-12) | | 4/3(3n-7)=9 | | 1+2b=4b-9 | | x+75+64=+180 | | 9m⁴m=49(4)⁴72⁴ | | (3x+2)+2x+(2x+2)+(4x-18)=90 | | 4.8x1.7=x | | 5x/12=4x/9-1 | | -1(4y-8)=(2(y+4) | | 7x+6(8)=104 | | 6x-3=-13 | | 50+3x-14=90 | | 8(-x-6)+2(-8+4)=80 | | (6x+30)(x+10)(3x)=180 | | P(2)=24x23-2^2-2-18 | | 17=-15^x | | 61=-2(-2b+6)-5(1-7b) | | (x+16)=(4x-5)=180 | | 15x-10=32+3x | | 3x-2=10-5x | | 7x=-35/8 | | X+50=2x+15 | | 35=3x*14 | | 4(x+5)+2(x+2)=14 | | 5+8x=13+x+7-3 | | 4(x+5)+6(x+2)=14 | | 4(x+5)+6(x+2)=42 | | 1=⅓x² | | 4(x+5)+2(x+2)=42 | | 85+5x+20=180 | | -(3n+48)=-24 |